Audience: engineers, architects, and SREs already running headscale + Tailscale as a self-hosted control plane.
TL;DR: With clusterID sharding + shared Postgres + an admission/control service + query isolation + incremental netmap, you can evolve single-process headscale into a horizontally scalable clustered service—functionally close to Tailscale’s SaaS model.


1) Current State & Problems

In many real deployments (especially with default/monolithic setups), headscale shows these limits:

  1. Single tailnet; weak tenant isolation
    By default, there isn’t first-class multi-tenancy. Strong “tenant boundaries” (isolation, quotas, policies) are hard to achieve.

  2. Single-process design; hard to scale horizontally
    As a monolith, headscale handles thousands of devices, but at tens of thousands the control-plane load (heartbeats, registration, policy changes, push fan-out) drives CPU/scheduling spikes.

  3. Netmap recomputed on every device/state change
    Each device online/offline/heartbeat/ACL change triggers (near) full netmap recomputation. That O(N) cost at high event rates makes CPU the bottleneck.

These issues narrow the path to “SaaS-like headscale that serves 100k+ devices.”


2) Common Approaches: Pros & Cons

  • Approach A: One tenant = one headscale + one database

    • Pros: excellent isolation; minimal code changes.
    • Cons: massive resource waste; painful ops (N× upgrades/monitoring/alerts/certs/backups).
  • Approach B: Make upstream headscale truly multi-tailnet

    • Pros: aligns with the goal.
    • Cons: deep refactors across auth, data model, queries, caching, event bus, ACL interpreter, and netmap generator;
      even with multi-tailnet, a single process remains a bottleneck.

3) Our Scalable Solution (Linear Growth)

Core idea: Turn headscale into a shardable worker node. Each node has a clusterID. All nodes share one Postgres (or a PG cluster), but each node only sees rows for its clusterID. In front, run an Admission/Control Service (ACS) that assigns tenants/users to a clusterID on first contact (sticky), enabling horizontal scale-out.

3.1 Architecture (ASCII)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
                       +-----------------------+
Register/Login ---> | Admission/Control | <--- Admin API/Billing/Quotas
/ Scale | Service (ACS) |
+----------+------------+
|
choose clusterID
v
+---------------------------+------------------------------+
| | |
+-----+-----+ +-----+-----+ +-----+-----+
| headscale | | headscale | | headscale |
| node A | clusterID=A | node B | clusterID=B | node C | clusterID=C
+-----+-----+ +-----+-----+ +-----+-----+
\ | /
\ | /
\--------------------+----+----+-----------------------/
| Shared Postgres / PG Cluster |
| (cluster_id dimension) |
+---------------------------------+

Clients:
On first join -> call ACS -> receive "available headscale address + clusterID + registration info"
Then all traffic sticks to that node. New tenants are placed by ACS during scale-out.

Key points

  • Shared Postgres, but every read/write is filtered by cluster_id, which logically shards one big DB.
  • ACS handles tenant creation, quotas, clusterID assignment, and first-time registration steering.
  • Headscale nodes are “as stateless as possible”: durable state lives in PG; caches accelerate but are reproducible.
  • DERP map, OIDC, ACLs, keys, etc. are stored per tenant / per cluster; queries are isolated.

4) Critical Implementation Details

4.1 Database Changes

4.1.1 Add cluster_id to all tenant/device tables

Add cluster_id to tables for tenants/users/devices/keys/routes/ACLs/sessions/netmap metadata and create composite indexes.

Example (conceptual):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
-- 1) Columns & defaults
ALTER TABLE nodes ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE users ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE api_keys ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE routes ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE acl_policies ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE preauth_keys ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE device_sessions ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';

-- 2) Typical indexes
CREATE INDEX idx_nodes_cluster_id ON nodes(cluster_id);
CREATE INDEX idx_users_cluster_id ON users(cluster_id);
CREATE INDEX idx_routes_cluster_u_drt ON routes(cluster_id, user_id, dest_prefix);
CREATE INDEX idx_acl_cluster_u_rev ON acl_policies(cluster_id, user_id, revision DESC);

If you’re currently “one DB per headscale,” you can keep DB-level sharding for hard isolation—but shared PG + cluster_id gives better resource reuse and elasticity.

4.1.2 Enforce cluster_id in the data access layer

  • On process start, resolve CLUSTER_ID (env/flag).
  • Inject WHERE cluster_id = ? into every query via the ORM/DAO (e.g., GORM scoped query) or handwritten SQL.
  • Guard against “unscoped” queries (fail fast).

Go sketch:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
type ClusterDB struct {
db *gorm.DB
clusterID string
}

func (c *ClusterDB) Scoped() *gorm.DB {
return c.db.Where("cluster_id = ?", c.clusterID)
}

// Usage
func (c *ClusterDB) ListNodes(ctx context.Context) ([]Node, error) {
var nodes []Node
return nodes, c.Scoped().Find(&nodes).Error
}

4.2 Server-Side Changes

4.2.1 Process startup with clusterID

1
2
3
4
5
# Each headscale node starts with its own cluster_id
CLUSTER_ID=A \
PG_DSN="postgres://..." \
DERP_MAP_URL="https://derp.example.com/map.json" \
./headscale --config ./config.yaml
  • Propagate CLUSTER_ID to logs, metric labels, event topics, etc.
  • All internal logic operates only on this cluster’s data.

4.2.2 Incremental netmap + convergence

Problem: Full netmap recomputation is O(N); frequent triggers burn CPU.
Fix:

  1. Graph decomposition: model netmap as “nodes + ACL edges + route prefixes,” so any change maps to a limited impact set.

  2. Impact tracking: when device X / ACL Y changes, only recompute for the affected subset (same user/tag/route domain).

  3. Cache + versioning:

    • Maintain a netmap version per (cluster_id, tenant/user).
    • Cache results in memory (LRU) or Redis with signatures.
    • On push, only send when “subscriber_version < latest_version” (delta).
  4. PG LISTEN/NOTIFY: triggers on change tables emit NOTIFY netmap_dirty (cluster_id, scope_key). Nodes LISTEN and queue work with debounce (50–200 ms).

Sketch:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
type DirtyEvent struct {
ClusterID string
ScopeKey string // e.g., userID, tagID, or route domain
}

func (s *Server) onDirty(e DirtyEvent) {
if e.ClusterID != s.clusterID { return } // only handle my cluster
s.debouncer.Push(e.ScopeKey) // merge changes 50–200 ms
}

func (s *Server) rebuild(scopeKey string) {
// 1) Find affected devices
affected := s.index.LookupDevices(scopeKey)
// 2) Rebuild netmap only for affected devices
for d := range affected {
nm := s.builder.BuildForDevice(d)
s.cache.Put(d, nm)
s.pushToDevice(d, nm)
}
}

This is the CPU game-changer. In real clusters we’ve seen 60–90% average CPU reduction.

4.3 Admission/Control Service (ACS)

Responsibilities

  • First-time admission and clusterID assignment (weighted by plan, geography, live load).
  • Returns the target headscale URL and registration parameters (e.g., derived AuthKey, OIDC URL).
  • Sticky placement: the same tenant/account consistently maps to the same cluster unless migrated.

Typical API

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
POST /api/v1/bootstrap
{
"account": "acme-inc",
"plan": "pro",
"want_region": "ap-sg"
}

200 OK
{
"cluster_id": "A",
"headscale_url": "https://hs-a.example.com",
"derp_map": "https://derp.example.com/map.json",
"auth_mode": "oidc",
"note": "stick to cluster A"
}

Placement algorithm: consistent hashing + load factors (CPU, session count, netmap backlog).
Rebalance: ACS maintains “migration plans”; new devices go to new clusters; existing devices migrate in batches (see 6.3).


5) End-to-End Flow (ASCII Sequence)

5.1 First-time device join

1
2
3
4
5
6
7
Client -> ACS: POST /bootstrap (account, plan, region)
ACS -> PG : read tenant/quota/bindings
ACS -> Client: {cluster_id=A, headscale_url=https://hs-a...}

Client -> Headscale(A): OIDC/registration/heartbeat
Headscale(A) -> PG: write nodes/users/... (cluster_id=A)
Headscale(A) -> Client: pushes netmap

5.2 Device change triggers incremental netmap

1
2
3
4
5
Client(Device X) -> Headscale(A): heartbeat/route change
Headscale(A) -> PG: update device_sessions/routes (cluster_id=A)
PG Trigger -> NOTIFY netmap_dirty (A, scope=user:acme)
Headscale(A) -> rebuild scope=user:acme (incremental)
Headscale(A) -> push updated netmaps to affected devices

6) Operations & Evolution

6.1 Deployment tips

  • PG/PG cluster: primary/replica with streaming replication; partition tables by cluster_id or use partial indexes to handle hot tenants at high concurrency.

  • Caching: local memory + optional Redis (share hot sets across instances; faster recovery).

  • TLS/DERP: one DERP map entry point; deploy multiple DERPs by region; all headscale nodes share the same DERP map.

  • Observability:

    • Metrics: netmap_rebuild_qps{cluster_id}, netmap_rebuild_latency_ms{scope}, notify_backlog, sql_qps{table}, push_failures.
    • Logs: label by cluster_id to isolate shard anomalies.

6.2 Quotas & Productization

  • Free tier: enforce “max devices per account” at ACS; deny extra registrations.
  • Commercial: assign a dedicated clusterID (exclusive headscale node) per tenant to guarantee performance.
  • Billing: track device online time and/or traffic (if you account for it) in PG; aggregate by clusterID + account.

6.3 Migration & Rebalancing (no downtime)

  • Add node C (clusterID=C); ACS routes new signups to C.

  • Gradual tenant migration:

    1. Mark tenant T’s “target cluster = C”;
    2. Issue hints so T’s devices switch to headscale(C) on the next reconnect;
    3. Devices naturally flip during heartbeat timeouts/reconnects;
    4. After confirmation, move T’s rows from A to C (same DB: UPDATE ... SET cluster_id='C' WHERE tenant_id=T; cross-DB: ETL).

7) Code Drop (Samples)

7.1 Inject clusterID at startup

1
2
3
4
5
6
7
8
9
10
func main() {
cfg := loadConfig()
clusterID := mustGetEnv("CLUSTER_ID")

db := mustOpenPG(cfg.PGDSN)
cdb := &ClusterDB{db: db, clusterID: clusterID}

srv := NewServer(cdb, clusterID)
srv.Run()
}

7.2 Guard against unscoped queries

1
2
3
4
5
6
7
8
9
10
11
12
// Every handler/usecase must use Server.scoped(), which enforces cluster_id
func (s *Server) scoped() *gorm.DB {
return s.cdb.Scoped() // internally adds WHERE cluster_id = ?
}

// Panic in CI/tests if someone uses the raw DB without cluster filter
var rawDBUsed = errors.New("raw DB use forbidden; must use scoped db")

func MustScoped(db *gorm.DB) *gorm.DB {
if !db.Statement.Clauses["WHERE"].Build(...) { panic(rawDBUsed) }
return db
}

7.3 LISTEN/NOTIFY for incremental work

1
2
3
4
5
6
7
8
9
10
11
12
-- Change trigger
CREATE OR REPLACE FUNCTION notify_netmap_dirty() RETURNS trigger AS $$
BEGIN
PERFORM pg_notify('netmap_dirty',
json_build_object('cluster_id', NEW.cluster_id,
'scope_key', NEW.user_id)::text);
RETURN NEW;
END; $$ LANGUAGE plpgsql;

CREATE TRIGGER trg_routes_dirty
AFTER INSERT OR UPDATE OR DELETE ON routes
FOR EACH ROW EXECUTE FUNCTION notify_netmap_dirty();

8) Security & Isolation

  • Tenant boundaries: dual filters—cluster_id + tenant_id. Audit sensitive ops (ACL updates, key lifecycle).
  • Cross-tenant access: ACL interpreter forbids it by default; allow only via explicit “tenant-to-tenant allowlist.”
  • Key material: encrypt at rest in PG (KMS/HSM). Headscale nodes do not persist secrets locally.
  • Least privilege: ACS can only read/write tenant↔cluster mappings; no direct access to device sessions.

9) Aligning with a Tailscale-like SaaS

This design offers the SaaS core: multi-node control plane + shared state store + admission front-end.

  • ACS orchestrates new tenant onboarding;
  • Paid tiers map to different cluster strategies (shared vs. dedicated);
  • Failure domains and capacity scale by node;
  • Centralized monitoring, billing, and compliance.

10) Closing Thoughts

Turning headscale into a sharded cluster isn’t just “add more boxes.” The keys are:

  • Keep the data plane simple, make the control plane incremental;
  • Each node owns its shard; Postgres is shared but logically isolated;
  • The Admission/Control Service handles tenant orchestration and load placement;
  • Incremental netmap pulls CPU out of the “full-rebuild hell.”

With this in place, both single-tenant and multi-tenant deployments can achieve near-linear scaling—SaaS-like in practice. If you’re modifying source and aiming for production, share your load curves and topology—especially netmap hit rates and CPU deltas. Those usually decide whether you can push toward six-figure device counts.


11) Demonstration

Deploy a two-node headscale using docker, create several users on each node, and then connect 50 clients. The two nodes share one PostgreSQL database.

Node with cluster ID 1

id1

Node with cluster ID 2

id2

Database users table

users

Database nodes table

nodes

*Database pre-auth keys table

keys

目标读者:已经在用 headscale/headsacle + Tailscale 自建私有控制面的工程师、架构师与 SRE。
结论先讲:通过“clusterID 分片 + 共享 PG + 接入控制程序 + 查询隔离 + netmap 计算收敛”,可以把单体 headscale 改造成可线性扩展的集群化服务,形态上接近 Tailscale 的 SaaS。


1. 现状与问题

在不少实际部署(尤其是保守默认形态)里,headscale 暴露出以下限制:

  1. 单 tailnet 的租户隔离不足
    默认形态下,租户隔离能力有限,难以做到天生的“多租户(multi-tenant)”边界和配额/策略独立。

  2. 单机架构,横向扩展困难
    headscale 作为单体进程,对上千设备尚可,上万设备时控制面心跳、注册、策略变更与推送的并发压力上来,CPU/调度抖动明显。

  3. 每次设备状态变更触发 netmap 全量计算,CPU 开销大
    设备上线/心跳/ACL 变更都会触发 netmap 计算,O(N) 的代价在高频事件下呈指数级放大,CPU 成为瓶颈。

这些问题使得“把 headscale 做成 SaaS、服务百万级设备”的道路变窄。


2. 常见改造路径的得失

  • 做法 A:一个租户=一套 headscale + 一份数据库

    • 优点:隔离极佳,改造量小。
    • 缺点:极度浪费资源、运维爆炸(N 倍升级、监控、告警、证书、备份)。
  • 做法 B:在原有 headscale 上直接做“多 tailnet”

    • 优点:形态与目标一致。
    • 难点:涉及鉴权、数据模型、查询、缓存、事件广播、ACL 解释器与 netmap 生成的全链路多租户化
      即使做成了多 tailnet单体也仍旧是瓶颈。

3. 我们采用的方案概览(可线性扩展)

核心思路:把 headscale 变成“可分片的工作节点”,每个节点带一个clusterID,所有节点共享一个 PG/PG 集群,但每个节点只“看见”属于自己 clusterID 的数据。最前面放一个接入控制程序(Admission/Control Service),负责用户/租户到 clusterID 的分配与黏住(sticky),实现水平扩展

3.1 架构图(文本版)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
                       +-----------------------+
注册/登录/扩容 --->| 接入控制程序 (ACS) |<---- 管理API/计费/配额
+----------+------------+
|
选择可用 clusterID
v
+---------------------------+------------------------------+
| | |
+-----+-----+ +-----+-----+ +-----+-----+
| headscale | | headscale | | headscale |
| node A | clusterID=A | node B | clusterID=B | node C | clusterID=C
+-----+-----+ +-----+-----+ +-----+-----+
\ | /
\ | /
\--------------------+----+----+-----------------------/
| 共享 PG/PG 集群 |
| (带 cluster_id 维度) |
+---------------------+

设备侧:
Client 在首次接入时 -> 请求 ACS -> 获得 “可用 headscale 节点地址 + clusterID + 注册信息”
之后所有交互都直连对应节点(黏住),横向扩容时通过 ACS 做新租户的分配。

要点

  • PG 是共享的,但所有读写 SQL 都带 cluster_id 过滤,从逻辑上把一个大库切成多逻辑分片。
  • ACS 负责:租户创建、配额/商业策略、clusterID 分配、设备首次注册引流。
  • headscale 节点无状态化(尽量):持久状态都在 PG,缓存只做加速,可重建。
  • DERP 映射、OIDC、ACL、Keys 等配置在租户维度/clusterID 维度落库,查询隔离。

4. 关键实现细节

4.1 数据库层改造

4.1.1 模型加 cluster_id

为所有与“租户/设备/密钥/路由/ACL/会话/netmap 元数据”相关的表新增 cluster_id 列,并建立联合索引。

示例(仅展示思路):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
-- 1) 字段与默认值
ALTER TABLE nodes ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE users ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE api_keys ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE routes ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE acl_policies ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE preauth_keys ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';
ALTER TABLE device_sessions ADD COLUMN cluster_id TEXT NOT NULL DEFAULT 'default';

-- 2) 典型索引
CREATE INDEX idx_nodes_cluster_id ON nodes(cluster_id);
CREATE INDEX idx_users_cluster_id ON users(cluster_id);
CREATE INDEX idx_routes_cluster_u_drt ON routes(cluster_id, user_id, dest_prefix);
CREATE INDEX idx_acl_cluster_u_rev ON acl_policies(cluster_id, user_id, revision DESC);

如果你目前是“一个库一个 headscale”,也可通过库级别分片进一步隔离,但共享 PG + cluster_id 能获得更好的资源复用弹性

4.1.2 访问层(DAO/ORM)强制带 cluster_id

  • 在服务器启动时确定本节点的 CLUSTER_ID(来自环境变量或启动参数)。
  • 在每一次查询前通过Context 中的 clusterID 自动注入到 SQL(如 GORM 的 Scoped Query、或手写 WHERE cluster_id = $1)。
  • 没有 cluster_id 的查询直接拒绝(guard 断言),避免“漏过滤”。

示例(Go 伪代码):

1
2
3
4
5
6
7
8
9
10
11
12
13
14
type ClusterDB struct {
db *gorm.DB
clusterID string
}

func (c *ClusterDB) Scoped() *gorm.DB {
return c.db.Where("cluster_id = ?", c.clusterID)
}

// 使用示例
func (c *ClusterDB) ListNodes(ctx context.Context) ([]Node, error) {
var nodes []Node
return nodes, c.Scoped().Find(&nodes).Error
}

4.2 服务进程层改造

4.2.1 进程启动与 clusterID 注入

1
2
3
4
5
# 每个 headscale 节点以不同的 cluster_id 启动
CLUSTER_ID=A \
PG_DSN="postgres://..." \
DERP_MAP_URL="https://derp.example.com/map.json" \
./headscale --config ./config.yaml
  • CLUSTER_ID 注入到:日志前缀、指标 label、事件广播主题等。
  • 所有内部逻辑只操作本 cluster 的对象集合。

4.2.2 netmap 计算的“增量化 + 粒度收敛”

问题本质:全量 netmap 计算是 O(N),高频触发会拖垮 CPU。
优化策略

  1. 图模型分解:把 netmap 看成“节点集合 + ACL 边 + 路由前缀集合”的结果,任何变更落到有限的影响集合

  2. 影响面追踪:当设备 X/ACL Y 变更时,只对受影响的节点子集重算(例如同一用户、同一 tag、同一 route 域)。

  3. 缓存 + 版本号

    • 为每个“(cluster_id, user/tailnet)”维护一个 netmap 版本号。
    • 计算结果缓存到内存(LRU)或 Redis,带上哈希签名。
    • 下行推送时仅在“订阅版本 < 最新版本”时增量下发。
  4. PG 触发 LISTEN/NOTIFY:在变更表上触发 NOTIFY netmap_dirty (cluster_id, scope_key),节点 LISTEN队列化处理,限流 + 合并抖动(debounce 50–200ms)。

伪代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
type DirtyEvent struct {
ClusterID string
ScopeKey string // 例如:userID 或 tagID 或 routeDomain
}

func (s *Server) onDirty(e DirtyEvent) {
if e.ClusterID != s.clusterID { return } // 只处理本集群
s.debouncer.Push(e.ScopeKey) // 50-200ms 合并
}

func (s *Server) rebuild(scopeKey string) {
// 1) 找到受影响设备集合
affected := s.index.LookupDevices(scopeKey)
// 2) 仅为受影响集合重建 netmap
for d := range affected {
nm := s.builder.BuildForDevice(d) // 只重该 d 所需
s.cache.Put(d, nm) // 缓存
s.pushToDevice(d, nm) // 推送
}
}

这一块是 CPU 成本收敛的关键,真实集群里能把平均 CPU打下来 60–90%。

4.3 接入控制程序(ACS)

职责

  • 接入(首次注册)与clusterID 分配(可按租户权重、付费等级、地理延迟、节点负载)。
  • 返回目标 headscale 节点地址注册参数(例如可选衍生的 AuthKey、OIDC 跳转地址等)。
  • 黏住(sticky):同一租户/账号始终返回同一 clusterID,除非运维执行迁移。

典型接口

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
POST /api/v1/bootstrap
{
"account": "acme-inc",
"plan": "pro",
"want_region": "ap-sg"
}

200 OK
{
"cluster_id": "A",
"headscale_url": "https://hs-a.example.com",
"derp_map": "https://derp.example.com/map.json",
"auth_mode": "oidc",
"note": "stick to cluster A"
}

分配算法:一致性哈希 + 负载因子(CPU、会话数、netmap 队列长度)。
再平衡:通过 ACS 维护“迁移计划”,让新设备去新集群;已有设备按批次做平滑迁移(见 6.3)。


5. 端到端数据流与时序(文本时序图)

客户端使用 tailscale 源码自行编译 + 自行开发的 ipn 程序用来管理 tailscaled

5.1 设备首次接入

1
2
3
4
5
6
7
Client -> ACS: POST /bootstrap (account, plan, region)
ACS -> PG : 读租户信息/配额/已有绑定
ACS -> Client: 返回 {cluster_id=A, headscale_url=https://hs-a...}

Client -> Headscale(A): OIDC/注册/心跳
Headscale(A) -> PG: 写 nodes/users/... (cluster_id=A)
Headscale(A) -> Client: netmap 下发

5.2 设备状态变更触发增量 netmap

1
2
3
4
5
Client(Device X) -> Headscale(A): 心跳状态/路由变化
Headscale(A) -> PG: 更新 device_sessions/routes (cluster_id=A)
PG Trigger -> NOTIFY netmap_dirty (A, scope=user:acme)
Headscale(A) -> rebuild scope=user:acme (增量)
Headscale(A) -> 推送新 netmap 给受影响设备集合

6. 运维与演进

6.1 部署建议

  • PG/PG 集群:建议启用主从 + 流复制,表按 cluster_id分区partial index,高并发下效果更优。

  • 缓存层:本地内存 + 可选 Redis(跨实例热数据共享;断点恢复更快)。

  • TLS/DERP:DERP Map 固定入口,后端按地域部署多个 DERP;各 headscale 共用同一 DERP Map。

  • 可观测

    • 指标:netmap_rebuild_qps{cluster_id}, netmap_rebuild_latency_ms{scope}, notify_backlog, sql_qps{table}, push_failures.
    • 采样日志:按 cluster_id 打标签,便于排查某分片异常。

6.2 配额与产品化

  • 免费用户:ACS 层限制“每账户设备数 N”,超出则拒绝分配注册令牌。
  • 商业用户:可分配“独享 clusterID(专用 headscale 节点)”,实现资源与性能承诺。
  • 计费:PG 里记录设备在线时长、流量(如只做控制面也可不记),按 clusterID+账户聚合。

6.3 迁移与再平衡(不中断)

  • 新增节点 C(clusterID=C),ACS 把新注册导入 C。

  • 老用户逐步迁移:

    1. 标记租户 T 的“目标 cluster=C”;
    2. 为 T 的设备签发“下一次重连时使用 headscale(C)”的引导参数;
    3. 设备在心跳超时/重连时自然切换;
    4. 完成后把 T 的数据从 A 复制到 C(同库可直接 UPDATE ... SET cluster_id='C' WHERE tenant_id=T;跨库需 ETL)。

7. 代码落地片段(示例)

7.1 进程入口注入 clusterID

1
2
3
4
5
6
7
8
9
10
func main() {
cfg := loadConfig()
clusterID := mustGetEnv("CLUSTER_ID")

db := mustOpenPG(cfg.PGDSN)
cdb := &ClusterDB{db: db, clusterID: clusterID}

srv := NewServer(cdb, clusterID)
srv.Run()
}

7.2 强制查询隔离的 Guard

1
2
3
4
5
6
7
8
9
10
11
12
// 每个 handler / usecase 都必须通过 Server.scoped() 拿到带 cluster_id 的句柄
func (s *Server) scoped() *gorm.DB {
return s.cdb.Scoped() // 内部就是 WHERE cluster_id = ?
}

// 任何“裸 db”使用在 CI/测试阶段直接 panic,避免漏筛
var rawDBUsed = errors.New("raw DB use forbidden; must use scoped db")

func MustScoped(db *gorm.DB) *gorm.DB {
if !db.Statement.Clauses["WHERE"].Build(...) { panic(rawDBUsed) }
return db
}

7.3 LISTEN/NOTIFY 增量任务

1
2
3
4
5
6
7
8
9
10
11
12
-- 变更触发
CREATE OR REPLACE FUNCTION notify_netmap_dirty() RETURNS trigger AS $$
BEGIN
PERFORM pg_notify('netmap_dirty',
json_build_object('cluster_id', NEW.cluster_id,
'scope_key', NEW.user_id)::text);
RETURN NEW;
END; $$ LANGUAGE plpgsql;

CREATE TRIGGER trg_routes_dirty
AFTER INSERT OR UPDATE OR DELETE ON routes
FOR EACH ROW EXECUTE FUNCTION notify_netmap_dirty();

8. 安全与隔离

  • 租户边界cluster_id + tenant_id 双层筛;敏感操作(ACL 更新、预共享 Key 生命周期)记录审计日志。
  • 跨租户访问:在 ACL 解释器层强制禁止跨租户匹配,除非显式开启“租户互访”白名单。
  • 密钥材料:私钥/预授权 Key 加密落库(KMS/密钥托管),headscale 节点无本地落地。
  • 最小权限:ACS 仅可读写“租户/映射”相关表,不直接触碰设备会话。

9 与 Tailscale SaaS 形态的对齐

本方案在形态上具备“控制面多节点 + 后端共享数据存储 + 前置接入控制”的 SaaS 基本盘:

  • 新租户接入由 ACS 编排;
  • 不同付费层级对应不同 clusterID 策略(共享/独享);
  • 故障域与容量按节点维度扩展;
  • 运维面做统一的监控、计费与合规模块。

10. 结语

把 headscale 改造成可分片的集群,不是“堆机器”那么简单,关键在于:

  • 数据平面保持简单控制面增量化
  • 每个节点只负责本分片PG 做共享但逻辑隔离
  • 接入控制程序承担“租户编排”与“负载均衡”;
  • 通过netmap 计算收敛把 CPU 从“全量重建地狱”中解放出来。

按本文方案落地后,单租户/多租户都能获得近似线性的扩展能力,体验与 SaaS 形态接近。在资源可控的前提下,我们就能把 headscale 带到“无限接近无限”的设备连接规模。


11. 演示

使用 docker 部署 两个节点的 headscale , 然后每个节点创建几个用户,再连接50个客户端。两个节点共享一个pgsql数据库。

cluster id 是1 的节点 node

id1

cluster id 是2 的节点 node

id2

数据库 users 表

users

数据库 nodes 表

nodes

数据库 pre auth keys 表

keys

headscale 压力测试

总结摘要

用法速记:

  1. 解压后 cp .env.example .env,填好 HEADSCALE_URLTS_AUTHKEY
  2. bash scripts/00_check_env.sh
  3. bash scripts/01_bootstrap_up.sh(默认 200 节点)
  4. bash scripts/02_list_nodes.sh → 生成 nodes.tsv
  5. 终端 A:bash scripts/03_churn.sh(每 30s 随机 up/down/restart)
  6. 终端 B:watch -n 20 'bash scripts/04_traffic_round.sh' 持续抽样流量
  7. 结束:bash scripts/99_cleanup.sh

200个客户端同时连接

客户端

headscale服务器资源消耗

服务器资源消耗

tailscale客户端服务器资源消耗-200个客户端

客户端资源消耗


一、推荐机器规格(200 设备规模)

被测 headscale与**发压端(loadgen)**分离,更易定位瓶颈。若你只买一台也能做,但推荐两台。

A. 发压端(运行 200 个 Tailscale 客户端容器)

  • vCPU:16 核

  • 内存:32 GB

  • 磁盘:100 GB NVMe(Docker 层与容器日志)

  • 网卡:≥ 1 Gbps(最好 5–10 Gbps)

  • OS:Ubuntu 22.04 LTS / Debian 12

  • 内核参数(建议):

    • fs.file-max=200000
    • net.core.rmem_max=16777216
    • net.core.wmem_max=16777216
    • net.ipv4.ip_local_port_range=10000 65000
  • Docker 守护进程日志轮转(避免日志撑满磁盘):

    • log-driver: "local", log-opts: {"max-size":"10m","max-file":"3"}

B. 被测 headscale(控制面)

  • vCPU:4 核
  • 内存:8 GB
  • 磁盘:100 GB
  • 网卡:≥ 1 Gbps
  • 数据库:SQLite(WAL 打开)或 PostgreSQL(随你已有环境)
  • 反向代理:如必须放在反代后,请放宽超时/保持连接,保证长轮询不被切。

C.(可选)自建 DERP 中继

  • vCPU:2–4 核
  • 内存:2–4 GB
  • 网卡:≥ 1 Gbps
  • 开放 TCP(derp) 与 UDP 3478(STUN)

二、目录结构(建议)

你可以在任意目录新建如下文件(均在本文给出内容):

1
2
3
4
5
6
7
8
9
10
11
headscale-loadtest/
├─ docker-compose.yml
├─ .env.example
├─ scripts/
│ ├─ 00_check_env.sh
│ ├─ 01_bootstrap_up.sh
│ ├─ 02_list_nodes.sh
│ ├─ 03_churn.sh
│ ├─ 04_traffic_round.sh
│ ├─ 99_cleanup.sh
└─ README.md (可把本文另存)

三、使用说明

  1. 准备:在 headscale 上生成一个 pre-auth key(预授权密钥)。
  2. 编辑 .env(复制 .env.example)填入 HEADSCALE_URLTS_AUTHKEY
  3. bash scripts/00_check_env.sh 检查环境(tun、docker 等)。
  4. bash scripts/01_bootstrap_up.sh 一键起 200 个 tailscale 客户端容器。
  5. bash scripts/02_list_nodes.sh 导出容器名 ↔ Tailscale IP 列表。
  6. 抖动:另开终端运行 bash scripts/03_churn.sh(每 30s 随机 up/down/restart 一批)。
  7. 流量:再开终端循环跑 bash scripts/04_traffic_round.sh(随机挑对做 TCP/UDP 10s 压力)。
  8. 结束后 bash scripts/99_cleanup.sh 清理容器与临时 sidecar。

四、docker-compose 与 .env

说明:我们用 docker compose up --scale tsnode=200 -d 来“一行扩容 200 台设备”。hostname 不必手配,容器会使用唯一的容器 ID 作为主机名,注册到 headscale 时也会保持唯一性。
iperf3 不安装进 tailscale 容器里,而是用短生命的 sidecar 容器通过 --network=container:<tsnode> 共享网络命名空间来发流/收流,避免镜像扩展与 apt 依赖。

docker-compose.yml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
services:
tsnode:
image: tailscale/tailscale:stable
restart: unless-stopped
cap_add:
- NET_ADMIN
devices:
- /dev/net/tun:/dev/net/tun
environment:
# 必填:由 .env 注入
- TS_AUTHKEY=${TS_AUTHKEY}
# 建议关闭容器内部 DNS 接管;指向你的 headscale
- TS_EXTRA_ARGS=--login-server=${HEADSCALE_URL} --accept-dns=false
sysctls:
net.ipv6.conf.all.disable_ipv6: "0"
# 可按需开启持久化(不是必须)
# volumes:
# - ts-state:/var/lib/tailscale

# volumes:
# ts-state:

.env.example(复制为 .env 并修改)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 你的 headscale 外部可达地址(含 https://,勿带结尾斜杠)
HEADSCALE_URL=https://headscale.example.com
# 从 headscale 预先创建的预授权密钥
TS_AUTHKEY=tskey-auth-xxxxxxxxxxxxxxxxxxxxxxxxxxxx

# 规模与参数(可改)
REPLICAS=200 # 模拟设备数量
CHURN_INTERVAL=30 # 抖动间隔秒
CHURN_BATCH_PERCENT=10 # 每轮对多少百分比容器做 up/down/restart
TRAFFIC_PAIR_COUNT=30 # 每轮随机压多少对
TRAFFIC_TCP_DURATION=10 # TCP 每对持续秒
TRAFFIC_TCP_PARALLEL=4 # TCP 并发流数 -P
TRAFFIC_UDP_DURATION=10 # UDP 每对持续秒
TRAFFIC_UDP_BW=50M # UDP 目标带宽 -b

五、脚本集合(保存到 scripts/

注意:脚本使用 docker compose(v2),以及 networkstatic/iperf3 作为临时 sidecar 镜像。首次需要联网 docker pull,之后就可离线复用。

1) 00_check_env.sh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#!/usr/bin/env bash
set -euo pipefail

# 载入 .env
if [[ -f .env ]]; then source .env; else echo ".env 未找到,请复制 .env.example"; exit 1; fi

# 检查 docker
command -v docker >/dev/null || { echo "docker 未安装"; exit 1; }
docker info >/dev/null || { echo "docker daemon 不可用"; exit 1; }

# 检查 compose
if ! docker compose version >/dev/null 2>&1; then
echo "docker compose v2 未安装"; exit 1
fi

# 检查 tun
if [[ ! -e /dev/net/tun ]]; then
echo "/dev/net/tun 不存在,尝试加载内核模块..."
if command -v modprobe >/dev/null; then
sudo modprobe tun || true
fi
fi
[[ -e /dev/net/tun ]] || { echo "仍无 /dev/net/tun,请在宿主机启用 TUN 模块"; exit 1; }

# 预拉镜像(可离线后使用)
echo "预拉取镜像(可选)..."
docker pull tailscale/tailscale:stable
docker pull networkstatic/iperf3:latest

echo "检查通过。"

2) 01_bootstrap_up.sh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#!/usr/bin/env bash
set -euo pipefail
source .env

echo "以 $REPLICAS 个副本拉起 tsnode..."
docker compose up -d --scale tsnode="${REPLICAS}"

echo "等待节点启动并完成登录(首次 30~60s)..."
sleep 45

echo "当前副本数量:"
docker compose ps tsnode

echo "可运行 scripts/02_list_nodes.sh 导出节点 IP。"

3) 02_list_nodes.sh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#!/usr/bin/env bash
set -euo pipefail

OUT="nodes.tsv"
: > "$OUT"

# 列出 compose 管理的 tsnode 容器(名字包含项目前缀)
mapfile -t CTS < <(docker compose ps --format '{{.Name}}' tsnode)

echo -e "container\tts_ip4" >> "$OUT"
for c in "${CTS[@]}"; do
ip=$(docker exec "$c" tailscale ip -4 2>/dev/null | head -n1 || true)
if [[ -n "$ip" ]]; then
echo -e "${c}\t${ip}" >> "$OUT"
fi
done

echo "已导出 $OUT(容器名 ↔ Tailscale IPv4)。"

4) 03_churn.sh(每 30s 随机 up/down/restart 一批)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env bash
set -euo pipefail
source .env

SERVICE="tsnode"
INTERVAL="${CHURN_INTERVAL:-30}"
PCT="${CHURN_BATCH_PERCENT:-10}"

echo "每 ${INTERVAL}s 随机对 ${PCT}% 容器执行 up/down/restart 抖动。按 Ctrl-C 结束。"

while true; do
mapfile -t CTS < <(docker compose ps --format '{{.Name}}' "$SERVICE")
TOT=${#CTS[@]}
((TOT>0)) || { echo "未发现容器"; exit 1; }
BATCH=$(( (TOT*PCT + 99)/100 )) # 向上取整

# 随机挑选
mapfile -t PICKED < <(printf "%s\n" "${CTS[@]}" | shuf -n "$BATCH")

echo "=== Churn round: $(date '+%F %T') 目标 $BATCH/$TOT ==="
for c in "${PICKED[@]}"; do
op=$((RANDOM%3)) # 0:down 1:up 2:restart
case "$op" in
0)
echo " - $c : tailscale down"
docker exec "$c" tailscale down || true
;;
1)
echo " - $c : tailscale up"
# 使用容器内命令 up;如果你在 .env 中改了 HEADSCALE_URL/TS_AUTHKEY,这里会重登
docker exec "$c" tailscale up --login-server="${HEADSCALE_URL}" --authkey="${TS_AUTHKEY}" --accept-dns=false || true
;;
2)
echo " - $c : docker restart"
docker restart "$c" >/dev/null || true
;;
esac
done

sleep "$INTERVAL"
done

5) 04_traffic_round.sh(随机起对做 TCP/UDP 流量)

设计为一轮 10s的抽样压测;你可以循环调用或配合 watch -n 20 调度。
服务器与客户端都用 临时 sidecar 容器--network=container:<tsnode> 共享网络命名空间,无需在 tsnode 内安装 iperf3。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env bash
set -euo pipefail
source .env

PAIRS="${TRAFFIC_PAIR_COUNT:-30}"

# 读取 nodes.tsv(若不存在则生成)
[[ -f nodes.tsv ]] || bash scripts/02_list_nodes.sh

mapfile -t LINES < <(tail -n +2 nodes.tsv)
CNT=${#LINES[@]}
((CNT>=2)) || { echo "可用节点不足 2"; exit 1; }

pick_node() {
# 输出:name ip
local line="${LINES[$((RANDOM % CNT))]}"
local name ip
name=$(awk '{print $1}' <<<"$line")
ip=$(awk '{print $2}' <<<"$line")
echo "$name $ip"
}

run_pair_tcp() {
local cA ipA cB ipB
read -r cA ipA <<<"$(pick_node)"
read -r cB ipB <<<"$(pick_node)"
[[ "$cA" != "$cB" ]] || return 0

# 启动一次性服务器(-1 处理一次并退出)
docker run --rm -d --name "iperf-srv-${cB}" --network="container:${cB}" networkstatic/iperf3 -s -1 >/dev/null

echo "[TCP] $cA -> $cB ($ipB)"
docker run --rm --network="container:${cA}" networkstatic/iperf3 \
-c "$ipB" -t "${TRAFFIC_TCP_DURATION:-10}" -P "${TRAFFIC_TCP_PARALLEL:-4}" >/dev/null 2>&1 || true
}

run_pair_udp() {
local cA ipA cB ipB
read -r cA ipA <<<"$(pick_node)"
read -r cB ipB <<<"$(pick_node)"
[[ "$cA" != "$cB" ]] || return 0

docker run --rm -d --name "iperf-srv-${cB}" --network="container:${cB}" networkstatic/iperf3 -s -1 >/dev/null

echo "[UDP] $cA -> $cB ($ipB)"
docker run --rm --network="container:${cA}" networkstatic/iperf3 \
-c "$ipB" -u -b "${TRAFFIC_UDP_BW:-50M}" -t "${TRAFFIC_UDP_DURATION:-10}" >/dev/null 2>&1 || true
}

echo "=== Traffic round @ $(date '+%F %T') pairs=${PAIRS} ==="
for ((i=0; i<PAIRS; i++)); do
if (( RANDOM % 2 )); then
run_pair_tcp &
else
run_pair_udp &
fi
done
wait
echo "=== Round done ==="

6) 99_cleanup.sh

1
2
3
4
5
6
7
8
9
#!/usr/bin/env bash
set -euo pipefail

echo "停止并清理 tsnode 副本与残留 iperf sidecar..."
# 先清理 sidecar
docker ps --format '{{.ID}} {{.Names}}' | awk '/iperf-srv-/{print $1}' | xargs -r docker rm -f

# 再停 tsnode
docker compose down -t 5

六、测试步骤建议

  1. 单节点验证

    • 修改 .envREPLICAS=1bash scripts/01_bootstrap_up.sh
    • docker compose exec tsnode-1 tailscale status 看是否已连上你的 headscale(可用 tailscale netcheck 验证直连/DERP)。
    • bash scripts/02_list_nodes.sh 确认导出了 IP。
  2. 扩到 200 节点

    • .env 改回 REPLICAS=200,再次 01_bootstrap_up.sh
    • 02_list_nodes.sh 导出 nodes.tsv
  3. 控制面抖动

    • 终端 A:bash scripts/03_churn.sh(默认每 30s 对 10% 做 up/down/restart)
    • 观察 headscale /metrics、CPU、内存、日志中 PollNetMap 等请求量与耗时。
  4. 数据面吞吐

    • 终端 B:watch -n 20 'bash scripts/04_traffic_round.sh' 连续抽样回合。
    • 对比直连与 DERP(可在安全组/防火墙层面封掉 UDP,观察 DERP 回退下的吞吐变化)。
  5. 扩大/缩小与对比

    • REPLICAS 改为 300/500 试试 headscale 的上限趋势(若机器足够)。
    • 分别在无抖动强抖动两种状态下记录 headscale 的指标差异。

七、常见问题(FAQ)

  • 为什么用 sidecar 跑 iperf3?
    这样无需在 tailscale 镜像里安装任何包;--network=container:<tsnode> 会共享该 tsnode 的网络命名空间,等价于“在该设备上跑 iperf3”。

  • Compose 扩容 200 个需要唯一主机名吗?
    不需要手工设置。默认容器主机名是容器 ID,Tailscale 设备名会唯一。也可自行加 --hostname 脚本模式(不建议和 --scale 混用)。

  • 抖动脚本中的 tailscale down/updocker restart 区别?
    down/up 更接近“客户端主动注销/重登录”;restart 模拟“设备重启或网络闪断”,三者混合能覆盖更多状态机分支。


问题

现在信创等需求越来越多,很多时候我们需要同时打包 x86arm 架构的程序。
本文主要介绍 如何使用 Docker 部署的 Jenkins 自动打包 x86arm 架构的镜像。
本次介绍 如何打包 Spring Boot 以及 Node 项目,包含了前后端。

环境准备

1、x86 电脑或服务器,部署了 Jenkins 服务
2、X86 电脑或服务器,部署了 Harbor 服务。 打包后,自动推送镜像到 harbor

Jenkins 安装及配置

  • Jenkins 安装
1
2
3
4
5
6
7
8
9
10
11
12
docker run \
-u root \
-d \
-v $(which docker):/usr/bin/docker \
-v $PWD/jenkins-data:/var/jenkins_home \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /root/.docker/:/root/.docker/ \
-v /etc/localtime:/etc/localtime \
--network host \
--restart=always \
--privileged \
jenkins/jenkins

注意: 挂载了宿主机的 /root/.docker/ 目录。这样方便 容器内使用 buildx

  • Buildx 安装

1、 在 Github 上下载 Buildx 二进制文件

1
wget https://github.com/docker/buildx/releases/download/v0.28.0/buildx-v0.28.0.linux-amd64

2、 移动到 /root/.docker 目录下

1
mv buildx-v0.10.2.linux-amd64 /root/.docker/cli-plugins/docker-buildx

3、 添加可执行权限

1
chmod +x /root/.docker/cli-plugins/docker-buildx

buildx

  • 检查容器内 buildx 是否可用
1
2
3
4
5
6
# 进入容器
docker exec -it 容器名称 sh
# 查看 buildx 版本
docker buildx version
# 查看 buildx 状态
docker buildx ls

buildx版本

多架构基础镜像准备

如果使用 自有 Harbor 里的镜像,需要仓库里有多个架构的基础镜像。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
# 能 push 的前提是,docker 已经 登入了 harbor
# 以 alpine 为例,x86 镜像,推送到 harbor
docker pull registry.cn-hangzhou.aliyuncs.com/acs/alpine:3.16.0
docker tag registry.cn-hangzhou.aliyuncs.com/acs/alpine:3.16.0 harbor.xxxx.com/library/alpine:3.16.0
docker push harbor.xxxx.com/library/alpine:3.16.0

# 拉取arm 镜像,推送到 harbor
docker pull --platform=linux/arm64 registry.cn-hangzhou.aliyuncs.com/acs/alpine:3.16.0-arm64 # 带 --platform=linux/arm64 ,表示拉取 arm64 架构的镜像
docker tag registry.cn-hangzhou.aliyuncs.com/acs/alpine:3.16.0-arm64 harbor.xxxx.com/library/alpine:3.16.0-arm64
docker push harbor.xxxx.com/library/alpine:3.16.0-arm64


# 合并 x86 和 arm64 架构的镜像
docker buildx imagetools create -t harbor.xxxx.com/library/alpine:3.16.0 harbor.xxxx.com/library/alpine:3.16.0-arm harbor.xxxx.com/library/alpine:3.16.0

harbor 显示

多架构镜像

后端打包

后端 Spring Boot 打包其实不需要 buildx,因为 Spring Boot 项目使用 jib 插件即可完成多架构镜像的打包及推送。

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
<plugin>
<groupId>com.google.cloud.tools</groupId>
<artifactId>jib-maven-plugin</artifactId>
<version>3.4.6</version>
<configuration>
<allowInsecureRegistries>true</allowInsecureRegistries>
<from>
<image>harbor.xxxx.com/library/openjdk:8u342-jdk</image>
<platforms>
<platform>
<architecture>arm64</architecture>
<os>linux</os>
</platform>
<!-- 如果想一次推多架构清单(amd64 + arm64),再加一个: -->
<platform>
<architecture>amd64</architecture>
<os>linux</os>
</platform>
</platforms>
</from>
<to>
<image>harbor.xxxx.com/library/spring:${project.version}</image>
</to>
<container>
<jvmFlags>
<jvmFlag>-Xms2g</jvmFlag>
<jvmFlag>-Xmx6g</jvmFlag>
<jvmFlag>-XX:+HeapDumpOnOutOfMemoryError</jvmFlag>
<jvmFlag>-XX:HeapDumpPath=/app/logs</jvmFlag>
<jvmFlag>-Duser.timezone=Asia/Shanghai</jvmFlag>
</jvmFlags>
<ports>
<port>9988</port>
</ports>
<creationTime>USE_CURRENT_TIMESTAMP</creationTime>
<mainClass>com.xxx.xxx.XxxApplication</mainClass>
</container>
</configuration>
</plugin>

前端打包

前端打包需要使用到 buildx,因为 Node 项目没有类似 jib 的插件。

前端项目 jenkinsfile 代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env groovy

def version = '1.0.arm64'

pipeline {
agent none
environment {
RELEASE_NUMBER = "${version}.${env.BUILD_NUMBER}"
NPM_CONFIG_REGISTRY = 'http://yournexue.com/repository/npm-group/'
}
stages {
stage("install dependencies and build") {
agent {
docker {
image 'node:14.18.1'
args '-v /root/.yarn/v6:/usr/local/share/.cache/yarn/v6 --add-host=raw.githubusercontent.com:185.199.111.133 --add-host=registry.yarnpkg.com:104.16.30.34 -e NODE_OPTIONS=--max_old_space_size=8192'
}
}
steps {
sh "sed 's/VERSION-NUM/${RELEASE_NUMBER}/g' -i ./.env.production"
sh "sed 's/VERSION-NUM/${RELEASE_NUMBER}/g' -i ./.env.test"
sh "yarn config set registry ${NPM_CONFIG_REGISTRY} && yarn config set ignore-engines true && yarn install"
// sh 'cp -rf dependencies/** /node_modules'
sh 'yarn build'
sh "rm -rf xxx-app && mkdir -p xxx-app && mv -f dist xxx-app"
sh "mv -f conf xxx-app"
sh "mv -f Dockerfile xxx-app"
}
}
stage("setup buildx (multi-arch + HTTP Harbor)") {
agent any
steps {
writeFile file: 'buildkit.toml', text: '''
[registry."harbor.xxxx.com"]
http = true
insecure = true
'''
sh '''
set -e
export DOCKER_HOST="${DOCKER_HOST:-unix:///var/run/docker.sock}"
export DOCKER_CLI_EXPERIMENTAL="${DOCKER_CLI_EXPERIMENTAL:-enabled}"
export HOME="${HOME:-/root}"

echo "[check] docker & buildx versions:"
docker version
docker buildx version

# 1) 启用 binfmt(使 x86 上可构建 arm64;幂等)
docker run --privileged --rm tonistiigi/binfmt --install all || true

# 2) 确保使用 docker-container 驱动的 builder(本 stage 内就地创建/选择,避免跨节点丢失)
BUILDER_NAME=fe-multiarch-builder

# 如已存在则直接 use,不存在则创建
if docker buildx inspect "${BUILDER_NAME}" >/dev/null 2>&1; then
docker buildx use "${BUILDER_NAME}"
else
docker buildx create \
--name "${BUILDER_NAME}" \
--driver docker-container \
--config ./buildkit.toml \
--driver-opt network=host \
--driver-opt "env.http_proxy=" \
--driver-opt "env.https_proxy=" \
--use
fi

# 3) 引导 BuildKit
docker buildx inspect --bootstrap
echo "[builders]"
docker buildx ls

# 4) 多架构构建并推送(显式指定 --builder,防止默认切回 docker driver)
echo "[buildx] building & pushing multi-arch image..."
docker buildx build xxx-app \
--builder "${BUILDER_NAME}" \
--platform linux/amd64,linux/arm64 \
-t 172.16.30.52:8894/library/app:${RELEASE_NUMBER} \
--push
'''
}
}
stage("clean") {
agent any
steps {
sh '''
# 可选择保留 builder 以复用缓存,这里演示清理
docker buildx rm fe-multiarch-builder || true
rm -rf app buildkit.toml || true
'''
}
}
}
}

总结

Jenkins 中同时打包 x86 以及 arm 架构的镜像,我们只需要在x86 架构的机器上安装 buildx 即可,不需要用到 arm 架构的机器。

下面对 Tailscale 如何做 NAT 穿透(包括直连建立、保持与回退)的关键原理拆开讲。

1)总体线路:三条路,优先直连

  • 优先直连(UDP over Internet):两端先尝试点对点直连,成功后所有数据都直接走这条路(性能最好、时延最低)。(tailscale.com)
  • 协商/引导与兜底(DERP):在直连之前与失败时,先经就近 DERP 中继建立“控制/引导通道”,用它交换候选地址、发起“请你打洞”等信号;若直连始终失败,则走 DERP 作为加密转发 的备胎。(tailscale.com)
  • 更细的穿透协议(DISCO + STUN):Tailscale 基于 WireGuard 自研了“DISCO”发现/心跳层,配合 STUN 获取公网映射与 NAT 类型,驱动 UDP 打洞。(tailscale.com)

2)打洞的关键“料”:同一 UDP socket、STUN、候选地址、互打

  • 同一 UDP socket:获取公网映射必须用和后续真正传数的同一个 UDP 套接字来发 STUN/接回包,否则你测到的 公网IP:端口 跟实际传输不同,洞就白打了。这是很多实现失败的根源。(tailscale.com)
  • STUN 获取外网映射与 NAT 性质:客户端向 STUN 发请求,得到“我在外面的 IP:port 是啥”,也能侧面推断 NAT 类型(如对称型更难打)。(tailscale.com)
  • 交换候选地址:双方把自己当前可用的候选 端点(endpoints)(含 IPv4/IPv6、多个 IP:port 映射)通过控制面/DERP 互换。(tailscale.com)
  • 双向同时发起(UDP hole punching):A、B 对彼此的候选 IP:port 同步“互打”若干小包(包含 DISCO 探测),在两端 NAT 上同时打开出站映射,让对方进入我的 NAT 表,从而“外部包”也能被 NAT 放行给我。(tailscale.com)

3)DISCO 层干了什么?(比 WireGuard 更懂 NAT 的“前戏”)

  • DISCO ping / 心跳tailscale ping 默认发的是 DISCO 探测,不是 ICMP;它能告诉你“目前是经 DERP 还是直连哪个 IP:port”。(tailscale.com)
  • CallMeMaybe:当 A 已经对 B 的候选端点开火时,会经 DERP 送一个 CallMeMaybe 给 B,意思是“我在打你的这些端口了,你也回打一发,把回程洞打开”。(Go Packages)
  • (新版)CallMeMaybeVia / UDP relay endpoint:还有一种 Via 形式,提示通过中继候选来协助开路(对“UDP 被限”网络更友好)。(Go Packages)
  • 选择 & 优先级:如果已经有可靠直连,端上可以不再开启新的路径;直连优先于“经中继的路径”。(Go Packages)

4)魔法插座:magicsock 把所有这些都“接”在一起

  • magicsock 是 Tailscale 在用户态的“魔法 UDP 套接字”,同一个 socket 同时承载 WireGuard 数据、STUN、DISCO,以及穿透时需要的各种小包和心跳,从而保证“测到的映射=用来传数的映射”。(Go Packages)
  • 这也是为何 Tailscale 不直接用内核态 WireGuard:因为 NAT 穿透的许多动作必须跟数据在同一个用户态 socket里做,方便灵活控制与观测重绑定(rebinding)、心跳、计时器等。(Reddit)

5)失败与回退:DERP 作为发现通道 + 永久兜底

  • 发现阶段:最初几包通常先走最近的 DERP,用于互递 DISCO / 候选地址;一旦直连打通,就切换到直连通道。(tailscale.com)
  • 兜底阶段:若遇到 对称 NAT + 防火墙 等强限制,直连打不通,就全流量走 DERP(加密、稳定,但带宽/时延逊于直连)。(iam.bitbeats.io)
  • 现实世界并不完美:官方也承认 NAT 穿透是“长期拉锯战”,需要持续遥测与改进。(tailscale.com)

6)连通保持与漫游(rebind)处理

  • 保活心跳:穿透成功后,DISCO 会以低频心跳维持 NAT 映射;社区里称过“silent disco”等优化,尽量减少无谓心跳。(GitHub)
  • NAT 重绑定:当一端公网 IP:port 变化(例如路由器重启/蜂窝到 Wi-Fi 切换),magicsock 会通过 DISCO/STUN 迅速探测到并重建可用路径。原理还是“同一 socket 上继续打洞 + 候选更新”。(Go Packages)

7)IPv6 情况

  • 双栈最优:若两端都有可达 IPv6,通常不需要穿透就能直连(无 NAT、路径更稳定);若一端仅 IPv4-NAT,仍按上面流程打洞或回退 DERP。(tailscale.com)

8)你能在现场怎么“看懂它在做什么”

  1. 看当前连接类型与路径
1
2
3
tailscale status --peers
tailscale ping <peer-name> # 默认 DISCO,输出会标明 via DERP(...) 或 via <IP:port>
tailscale ping --until-direct <peer-name> # 持续直到打出直连

这些命令能直接看到“是否直连、走哪个 IP:port、DERP 节点名”等。(tailscale.com)

  1. 网络自检
1
tailscale netcheck

用于判断 UDP 是否可出、就近 DERP、是否存在对称 NAT 等(输出因版本而异)。文档对“连接类型”、“DERP 角色”有解释。(tailscale.com)

9)把整个流程串起来(顺序图式说明)

  1. 两端启动 → 通过控制面注册/换公钥,并各自连上就近 DERP。(tailscale.com)
  2. STUN 获取自己的公网 IP:port 与 NAT 线索;把“候选端点”发给对端(经控制面/DERP)。(tailscale.com)
  3. A/B 同时对彼此候选端点发 DISCO 探测(互打)→ NAT 表里建立出站/入站映射。必要时 A 还会经 DERP 发 CallMeMaybe 让 B 主动回打。(Go Packages)
  4. 任一条直连能收发 DISCO/数据包 → 选定最佳直连路径并切换数据面到直连。(tailscale.com)
  5. 若所有直连失败 → 全流量走 DERP,同时周期性再尝试直连以便条件改变时“脱离中继”。(iam.bitbeats.io)

进一步阅读(权威/源码级)

  • 官方长文:How NAT traversal works(强烈推荐通读,解释了为何“必须同一个 UDP socket”)。(tailscale.com)
  • DERP 服务器与角色(发现与兜底)。(tailscale.com)
  • DISCO 协议与 CallMeMaybe / CallMeMaybeVia 类型(Go 包文档)。(Go Packages)
  • magicsock 源码包(用户态“魔法 socket”,NAT 打洞的执行场)。(Go Packages)
  • Ping 类型说明(DISCO/TSMP/ICMP 的区别与用途)。(tailscale.com)

大家好,我是那个曾经天真地以为“买个摄像头=万事大吉”的倒霉蛋。

你有没有经历过这样的场景?
花几百块买了个“智能家用摄像头”,画质清晰、夜视给力、手机远程查看so easy。结果用了三个月,厂商发来一条温柔又冰冷的消息:

“亲爱的用户,您的免费云存储已到期,请支付29元/月开启录像回看功能。”

什么?!一个月29?!我这是在养摄像头还是在供儿子上私立国际学校?

更离谱的是,有些品牌还玩起了“套餐制”——7天循环录像要30,30天要60,要是想永久保存?不好意思,得加钱,还得绑定他们的会员体系……仿佛你不交钱,家里的猫偷吃零食的画面就永远消失了。

于是,我含泪删掉了那段拍到我家狗子半夜翻垃圾桶的珍贵视频,并立下誓言:

我要自己当“云服务商”!


一、市面上的摄像头,不是太贵就是太坑

现在的家用摄像头,说白了就两种:

  1. 便宜的:只能实时查看,不能回放,等于“睁眼瞎”。
  2. 贵的:必须订阅云服务才能录像,每月扣你几十块,像极了爱情里的“续费关系”。

而且你还不能断订——一旦停了,之前的录像全清空,比前任删聊天记录还彻底。

这不是科技,这是数字勒索

所以,我决定反向操作:买硬件不买服务,数据本地存,自由掌握在自己手里


二、我的省钱方案:海康+录像机+Mini主机 = 家庭版“天网系统”

经过一番研究(和踩坑),我最终选择了这套组合拳:

  • 设备清单
    • 海康威视 WiFi/有线双模摄像头 ×2(约230元/台)
    • 海康威视 WiFi录像机(NVR)×1(2路约70元左右,4路约140元左右)
    • Mini主机一台(小钢炮式Windows迷你电脑,300~600元)

总价不到1000,能用五年起步,平均每天才几毛钱,连一杯奶茶都不到!

✅ 方案优势一览:

项目 传统云摄像头 我的DIY方案
是否需要月租 是(29~60元/月) 否!一次性投入
录像是否本地存储 否(全靠云) 是!硬盘说了算
手机能否远程查看 能(通过“海康互联”APP)
数据隐私安全性 厂商掌握你的生活 自己掌握一切
视频保留时间 取决于付费等级 想存多久存多久

三、怎么搭?超简单三步走!

第一步:基础搭建 —— 海康全家桶上线

  1. 把两个海康摄像头装好(一个放客厅盯娃,一个放门口防快递刺客)。
  2. 连上WiFi录像机(支持无线连接摄像头,不用拉网线,懒人福音)。
  3. 插上电源,开机自动配对。

这时候你就可以用 “海康互联”APP 在手机上看实时画面啦!是不是很爽?

⚠️ 重点提醒:
设置时一定要记住你创建的那个 admin账号和密码!这不仅是登录APP的钥匙,更是进入摄像头后台的“万能通行证”。忘了它?恭喜你,可能要重置设备从头再来……

家里网络示意图

网络

录像机

录像机

室内摄像头

室内摄像头

mini主机

mini主机


第二步:进阶玩法 —— 把录像搬到自己的“云”里

你以为这就完了?No no no,真正的自由才刚开始!

我们目标是:不让任何厂商赚我一分钱,所有录像我说了算!

怎么做?

👉 把摄像头的数据导出来,存在自己的电脑或百度网盘!

具体操作如下:

  1. 准备一台 Mini主机(比如Intel N100的小盒子,性能够用还省电)。
  2. 让它连上家里同一个网络(可以让摄像头直接接路由器,也可以直接连录像机的WiFi热点)。录像机的WIFI热点以及密码可以在海康互联APP里看到。
  3. 登入摄像头后台,获取RTSP流地址(后面细说)。
  4. 在Mini主机上跑一个叫 ZLMediaKit 的开源工具(GitHub上有,免费!),它可以接收并录制摄像头的视频流。
  5. 录下来的文件自动同步到百度网盘、阿里云盘或者NAS,实现“私有云备份”。

这样一来,哪怕你家停电、设备损坏,视频还在云端躺着笑你:“主人,我活得比你还久。”

摄像头使用ZLMediaKit参考链接:https://ownding.com/2025/06/06/%E6%B5%B7%E5%BA%B7%E6%91%84%E5%83%8F%E6%9C%BA%E5%BD%95%E5%83%8F%E6%9C%BA%E5%AF%B9%E6%8E%A5%E6%96%B9%E5%BC%8F%E8%AE%B0%E5%BD%95/


四、如何找到摄像头IP并登入后台?

很多人卡在这一步,其实很简单,只需要一点点“黑客精神”(别怕,合法的那种)。

方法一:通过录像机找IP

  1. 用手机连上录像机发出的WiFi(初始默认名通常是 NVRxxxxxx)。
  2. 打开命令行工具(Windows按 Win+R → 输入 cmd)。
  3. 输入这个神奇咒语(需要先安装 nmap客户端):
1
nmap -sn 192.168.254.0/24

(注意:不同型号IP段可能不同,常见的是 192.168.1.x 或 192.168.254.x)

执行后你会看到一堆设备列表,其中就有你的摄像头IP,长得像这样:192.168.254.101

此步的目的就是找到摄像头的IP

  1. 打开浏览器,输入 https://[IP地址],比如:
1
https://192.168.254.101

然后输入你在“海康互联”里设的 admin 账号密码,Boom!进入后台!

在这里你可以:

  • 查看RTSP推流地址(一般是 rtsp://admin:12345@192.0.0.64:554/h264/ch1/main/av_stream 这种格式)
  • 调整分辨率、帧率
  • 设置移动侦测报警

摄像头web界面

摄像头web界面


五、终极自由:ZLMediaKit + 百度网盘 = 永不丢失的录像库

接下来就是技术流时间(放心,不写代码):

  1. 在Mini主机安装 ZLMediaKit(搜索 GitHub 就能找到)。
  2. 配置它去拉取每个摄像头的RTSP流。
  3. 设置录制规则:比如全天录制 or 只录有人动的时候。
  4. 百度网盘客户端CloudSync 类工具,把录好的视频文件夹自动上传。

完成之后,效果是这样的:

当你出门旅游时,突然收到消息:“阳台有只野猫跳进来啃拖鞋。”
你打开手机百度网盘,翻出昨天下午三点的录像,果然看见一只橘猫正在表演“拖鞋刺身”。
你一边笑出声,一边庆幸:我没给任何公司交过一分钱会员费。

摄像头使用ZLMediaKit参考链接:https://ownding.com/2025/06/06/%E6%B5%B7%E5%BA%B7%E6%91%84%E5%83%8F%E6%9C%BA%E5%BD%95%E5%83%8F%E6%9C%BA%E5%AF%B9%E6%8E%A5%E6%96%B9%E5%BC%8F%E8%AE%B0%E5%BD%95/


六、总结:自己动手,丰衣足食

这套系统的好处总结一下:

✅ 不依赖云服务,没有月租
✅ 数据完全自主掌控,不怕泄露
✅ 支持长期存储 + 自动备份
✅ 手机随时查看,体验不输商业产品
✅ 关键是——省钱!省钱!省钱!

虽然前期稍微动了点脑子,但比起每个月被割韭菜,这点学习成本简直微不足道。


最后一句忠告:

科技应该是为你服务的,而不是让你沦为它的付费奴隶。

与其把钱交给那些天天弹窗催续费的App,不如投资一套真正属于自己的家庭安防系统。

毕竟,谁不想做一个既安全、又清醒、还不花冤枉钱的智慧家长呢?


📌 附:装备采购建议清单

名称 推荐型号 价格参考
海康摄像头 HK-Q3S5M-W / DS-IPC-K44H-LWPT ¥180~220
海康WiFi录像机 7802N-S1/W ¥60~140左右
Mini主机 Intel N100小主机 ¥300~600
开源工具 ZLMediaKit(GitHub) 免费

注意:mini主机自带几百G硬盘,够使用了。如果把录像同步到网盘后,可以清理mini主机硬盘中的视频文件。


如果你也厌倦了“云存储绑架”,不妨试试这个方案。
说不定哪天你还能靠这段拍到邻居偷摘你葡萄的视频,在小区业主群里一战成名!


#家用摄像头 #海康威视 #DIY监控 #零月租方案 #拒绝云绑架 #自己动手丰衣足食

Tailscale 4via6 在 Windows 子网路由上的 ICMP 行为说明

(为什么能用“合成 IPv6”访问 Web,却 ping -6 不通)

1. 场景与现象

  • 拓扑:
    A、B 两台 Windows 电脑安装 Tailscale;B 同时作为子网路由器(Subnet Router)。
    C 是 OpenWrt 设备,挂在 B 所在现场的内网。

  • 配置:已开启 4via6,B 宣告(advertise)一个 IPv6 子网,并在 Headscale/后台审批通过。

  • 现象:

    • 从 A 能用 “合成的 IPv6 地址” 打开 C 的 Web 服务(HTTP/HTTPS 正常)。
    • 但从 A 执行 ping -6 <C-的IPv6> 不通。抓包能看到 Echo Request 发出,但收不到回包;在 B 上用 Wireshark 看,没有 ICMP 包进入

2. 关键概念:4via6 与“合成 IPv6”

Tailscale 的 4via6 会把内网 IPv4 目标编码进一个保留的 ULA 段(如 fd7a:115c:a1e0::/48),形成合成 IPv6 地址
例:c0a8:0601 对应 192.168.6.1,于是会看到类似
fd7a:115c:a1e0:b1a0:7:c0a8:0601 这样的目的地址。

  • TCP/UDP 流量:Tailscale 会把发往这些“合成 IPv6”的包转换并送到真实的 IPv4 终端,所以浏览器/SSH/Modbus-TCP 等能正常工作。
  • ICMPv6:在 Windows 客户端 上,当前路径不会把 ICMPv6 Echo 转成 ICMPv4 Echo,因此 ping -6 不会得到回应——包也不会被转发到 B 或 C。

3. 根因(简洁版)

  1. Windows + 4via6 的协议支持面
    只对 TCP/UDP 做 IPv6→IPv4 转换;ICMPv6 不在转换范围内,所以 ping -6 失败,而 Web 正常。

  2. Windows 子网路由对“原生 IPv6 子网”的转发能力有限
    即便 B 宣告了 IPv6 子网,Windows 作为子网路由在 IPv6 转发与邻居发现处理上并不如 Linux 完整稳定,导致跨站点的 ICMPv6 转发经常不可用

    换成 Linux/OpenWrt 当子网路由后,同样配置下 ping -6 通常即可恢复正常。

4. 结论一句话

在 Windows 子网路由 + 4via6 的组合中,HTTP/UDP 能走,但 ICMPv6 不会被转换/转发,所以 ping -6 不通是预期行为;Linux 子网路由可以正常转发 ICMPv6。

5. 可选解决/替代方案

方案 A(最省事):用 IPv4 做连通性检查

  • 改用 ping 192.168.6.x(ICMPv4),或
    Test-NetConnection 192.168.6.x -Port 80/22 验证端口。
  • 适合“只想知道在线与否”的场景;无需改动现场。

方案 B(推荐):把 子网路由器 换成 Linux/OpenWrt

在 B 侧放一台小 Linux/OpenWrt 盒子(可以是现有 OpenWrt 路由或小主机/容器)作为 Tailscale 子网路由:

1
2
3
4
5
6
7
8
9
# 1) 开启 IPv6 转发
sysctl -w net.ipv6.conf.all.forwarding=1
# 持久化:/etc/sysctl.conf 里设置 net.ipv6.conf.all.forwarding=1

# 2) tailscaled 启动并宣告 IPv6 前缀
tailscale up --advertise-routes=<你的IPv6前缀>/64 --accept-dns=false
# 按需添加其它前缀,或配合 --accept-routes

# 3) 在 Headscale/管理端批准这些 routes

完成后,从 A 直接 ping -6 <C 的**原生** IPv6>,ICMPv6 会被正常转发;B 上能抓到往返的 ICMPv6。

方案 C(最干净):让 C 直接加入 Tailnet

在 OpenWrt 上安装 Tailscale,让 C 成为独立节点(拥有自己的 fd7a:... 节点地址):

1
2
3
4
5
opkg update
opkg install tailscale
/etc/init.d/tailscaled enable
/etc/init.d/tailscaled start
tailscale up

A 直接 ping -6 <C 的 Tailscale IPv6>,端到端走 Tailscale,绕开子网路由的限制。

方案 D(保留 Windows,但想要 ping -6

在 B 侧增加小型 Linux NAT64/CLAT(例如 Jool EAMT),专门把发往 fd7a:115c:a1e0::/96ICMPv6⇄ICMPv4 做转换;并在 B/网关上加静态路由把该前缀指向这台转换器。

该方案能打通 ping -6,但复杂度与维护成本较高,一般不如方案 B/C。

6. 快速排障自检

  • 能开 Web,ping -6 不通:90% 是 ICMPv6 未转换/未转发的已知限制。

  • 在 A 执行:

    • ping 192.168.6.x(C 的 IPv4):若可达,证明 4via6 通路正常,只是 ICMPv6 不支持。
    • route print -6Get-NetRoute -AddressFamily IPv6:若看到目的合成地址不断触发 Neighbor Solicitation 而无回应,这是主机把目标当“链路内”,但 Tailscale 不会为其应答/转发 ICMPv6 的典型表现。
  • 在 B 抓包(Tailscale/Wintun 接口):若看不到来自 A 的 ICMPv6,则说明包没被交给子网路由(仍印证“Windows 不处理 ICMPv6 转换”)。

7. 常见问答

  • 为什么浏览器能打开?
    因为 TCP(和大多数 UDP)会被 4via6 转换并转发到 IPv4 终端;ICMPv6 不在这个转换面里。
  • UDP 是否也能走?
    能(取决于具体协议/端口与策略),多数 UDP 通过 4via6 没问题;问题集中在 ICMPv6。
  • 以后 Windows 会支持吗?
    以当前版本看没有现成开关可启用。若对 ICMPv6 必须要,建议按方案 B/C 处理。

推荐落地选型

  • 想保留 Windows 当子网路由:接受“不能 ping -6”,用 IPv4 ping/端口探测替代。
  • 需要完整 IPv6(含 ping -6:把子网路由迁到 Linux/OpenWrt;或让终端设备直接跑 Tailscale。

openwrt

嗨,各位工业界的“键盘侠”、PLC驯兽师、设备救火队长们:

你们有没有遇到过这种尴尬场面?

👉 你想远程调试一台远在千里之外的设备,IP是 192.168.1.2 —— 很标准,很熟悉,闭着眼都能敲出来。

结果一连,连上了…隔壁老王的设备???

因为那边厂里有十台设备,清一色都是 192.168.1.2 —— 没错,工业设备出厂默认IP,就是这么“团结”。

这时候你只能:

  • 打电话问现场:“喂,老张,你那台192.168.1.2的PLC是第几台来着?”
  • 查文档:“哦对,虚拟IP是10.8.3.47…”(谁记得住啊!)
  • 改IP?不敢动,一动全厂报警,老板电话马上打过来:“你动我产线IP干嘛?!”

🤯 痛点爆炸!

别慌,救星来了!

我花了N个通宵、喝了N箱咖啡、掉了N撮头发,终于搞出了一个神器 —— 基于 WireGuide 的工业设备物联 & 远程运维系统!

它不炫技,不画饼,专治各种“IP撞车”、“远程卡壳”、“虚拟地址记不住”的工业疑难杂症。

🎯 核心功能一句话总结:

👉 你输入 192.168.1.2,我就让你连上你心里想的那台 192.168.1.2 —— 哪怕全世界有100台设备都叫这个名字!

是不是听着像魔法?其实是黑科技。

🔧 它怎么做到的?

想象一下,你走进一家超大超市,货架上摆着100瓶“可乐”,全都叫“可乐”,包装一模一样。

传统方案(比如SD-WAN/VPN)会说:“不行,重名了!我给每瓶可乐贴个编号:可乐#001、可乐#002…你得记住编号才能买。”

—— 工程师:我只想喝可乐,不想背编号!

而我的方案说:“没问题!你喊‘我要可乐’,我问你‘你要A区第三排那瓶,还是B区收银台旁边那瓶?’ —— 你指一下,我直接递给你。”

我们用 WireGuide 在后台悄悄“打标签+智能路由”,但前端完全不打扰你 —— 你看到的,还是那个熟悉的 192.168.1.2。

💡 三大爽点,专为工程师打造:

✅【零改造组网】
不用动现有设备、不用改IP、不用加交换机、不用培训网络管理员 —— 插上就能用,成本低到老板笑出声。

✅【真·原生IP访问】
PLC软件里直接输 192.168.1.2,点连接 —— 嗖,连上了!不是虚拟IP,不是映射端口,就是原汁原味的设备IP,和你在现场插网线一模一样!

✅【子网重叠?不存在的】
十台设备都是192.168.1.x?没问题!百台设备跨厂区IP全撞车?小意思!我们后台自动隔离+精准路由,互不干扰,所有设备永远在线,永不掉线。

🛠️ 举个栗子:

张工在上海总部,想调试深圳分厂的“包装机PLC”,IP是192.168.1.2。

同时,成都分厂的“注塑机PLC”也是192.168.1.2。

传统方式:张工得查表,找到“深圳包装机”的虚拟IP是10.12.5.8,再打开软件,输入这个“陌生号码”,祈祷别输错。

WireGuide方式:张工打开软件 → 选择“深圳分厂-包装机” → 自动连上 → 地址栏赫然显示:192.168.1.2 ✅

—— 就像你手机里存了两个“李伟”,一个备注“北京李伟”,一个“上海李伟”,你点“北京李伟”,打的就是北京那位。

🚀 为什么现有方案搞不定?

市面上的SD-WAN、工业VPN,本质是“换IP方案” —— 把冲突的IP换成不冲突的虚拟IP。这就像给每个人发个工牌号,不让叫名字了。

问题是:工程师不是网管!他们熟悉的是设备本体IP,不是你分配的“虚拟工号”。每次调试都要查表、换IP、重配软件 —— 效率拉胯,体验稀碎。

我的方案:不换IP,不改习惯,只改“背后怎么送信” —— 让网络自己变聪明,用户无感。

📈 效果如何?

  • 远程调试时间缩短 60%+
  • 工程师培训成本归零(因为不用学新IP)
  • 现场断网/误操作风险下降 90%
  • 老板满意度 ↑↑↑(因为不用买新设备、不用请外援、不用停产)

🎁 彩蛋功能:

  • 支持多工程师同时访问不同“192.168.1.2”,互不干扰
  • 流量加密,安全合规,符合等保要求
  • Web控制台一键切换设备,像换电视频道一样简单
  • 支持老旧设备、非智能设备、串口转网口设备 —— 老古董也能上高速!

📣 最后说句掏心窝子的:

工业不是互联网,不能总想着“颠覆”、“重构”。工程师要的是“顺手”、“靠谱”、“别添乱”。

我的产品不追求花里胡哨,只专注一件事:

让远程运维,回归它本该有的样子 —— 简单、直接、高效。

你敲 192.168.1.2,我就给你 192.168.1.2。

不多不少,不偏不倚。

如果你受够了“IP撞车”、“虚拟地址背诵大赛”、“远程调试像解谜游戏”…

欢迎来找我聊聊 👋 可以通过左侧导航栏Github链接找到我。

我们的产品让工业远程运维,像在家上路由器后台一样轻松。

#工业物联网 #远程运维 #PLC调试 #工业4.0 #WireGuide #子网冲突终结者 #工程师友好型产品 #别再背虚拟IP了

网站介绍

国内要充值 国外一些网站的会员服务,一般都挺麻烦的。

我自己有 wise ,但是基本上也很少用它来充值,主要是价格比较贵(基本上都是原价)。而且我都在 新加坡 区域充值,价格好像比其它区域更贵一点。

23年的时候有充值过 OpenAI 的 API,但是用的少,后面就没有充值了。 之后主要使用免费的比如 GeminiQwen,最近想使用下 Codex 看下效果。无意间看到有拼团的充值网站,价格比较优惠,比原价便宜 2美元。

想着就试下,发现能正常使用。 所以写出来分享下。整个操作基本没难度,直接使用 支付宝 进行付款就行。

网站是FamilyPro

FamilyPro 助您节省 ChatGPT、Netflix、Spotify 等服务费用。 分享您的订阅或加入群组——简单、安全、实惠。

链接:https://familypro.io?invite=GHb1a30b

注册、购买

推荐使用 Google 账号,我使用 hotmail 和 outlook 后缀的邮箱都不行。hotmail后缀的邮箱在注册时就提示无法使用,outlook的邮箱一直收不到 激活邮件。

该网站支持 拼团共享账号,我买的是独享,使用的是自己的账号。

如果购买独享账号,需要提供给 网站 session,然后等几分钟就能成功。我后面看了下,应该是从 iOS 端购买的。

ChatGPT登入后,session 获取地址:https://chatgpt.com/api/auth/session

主页提供多种账号充值购买!

主页

购买界面,支持支付宝!

支付宝

订单界面!

订单

OpenAI ChatGPT显示 Plus订阅成功!

订阅成功

在 iOS 端查看订阅信息!

iOS

问题

使用jenkins对一个前端项目进行打包,每次打包都出现 file-saver 超时(TIMEOUT)问题。即使将yarn依赖源改成国内都解决不了。

1
2
3
error An unexpected error occurred: "https://raw.githubusercontent.com/eligrey/FileSaver.js/e865e37af9f9947ddcced76b549e27dc45c1cb2e/package.json: ETIMEDOUT".
info If you think this is a bug, please open a bug report with the information provided in "/var/jenkins_home/workspace/frontend_k8s/yarn-error.log".
info Visit https://yarnpkg.com/en/docs/cli/install for documentation about this command.

鉴于国内对GITHUB访问时断时续的情况,如果打包时还是从GITHUB进行下载,那么这个问题就会一直出现。

那么,在已经将yran源改成国内的情况下,为何还会出现从 GITHUB 下载的情况呢? 而且项目中 FileSaver 使用的 代码形式的引入,没有进行依赖配置。

排查

为了排查问题,我先在本机电脑上使用 VPN,然后执行 yarn install 看下 yarn.lock 情况。

在命令成功执行后,打开 yarn.lock 文件,搜索 file-saver 找到了原因。

原来是程序中使用了 jspdf,而这个组件依赖 file-saver ,而且指定从 GITHUB 下载。

至此总算找到原因了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
jspdf@^1.5.3:
version "1.5.3"
resolved "https://registry.npmmirror.com/jspdf/-/jspdf-1.5.3.tgz#..."
integrity sha512-J9X76xnncMw+wIqb15HeWfPMqPwYxSpPY8yWPJ7rAZN/ZDzFkjCSZObryCyUe8zbrVRNiuCnIeQteCzMn7GnWw==
dependencies:
canvg "1.5.3"
file-saver eligrey/FileSaver.js#1.3.8 # ← 这里是问题所在
html2canvas "1.0.0-alpha.12"
omggif "1.0.7"
promise-polyfill "8.1.0"
stackblur-canvas "2.2.0"


file-saver@1.3.8, "file-saver@github:eligrey/FileSaver.js#1.3.8":
version "1.3.8"
resolved "https://codeload.github.com/eligrey/FileSaver.js/tar.gz/e865e37af9f9947ddcced76b549e27dc45c1cb2e"

jspdf

filesaver

解决

package.json 文件中,添加 resolutions:

1
2
3
4
5
{
"resolutions": {
"**/file-saver": "^2.0.5"
}
}

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
{
"name": "xxx",
"version": "1.0.2",
"private": true,
"author": "8080@gmail.com",
"scripts": {
// ... 你现有的 scripts
},
"dependencies": {
// ... 你现有的 dependencies
},
"devDependencies": {
// ... 你现有的 devDependencies
},
"resolutions": {
"**/file-saver": "^2.0.5"
},
// ... 其他配置
}

然后删除 yarn.lock 后,重新执行:yarn install.

0%